5.0 NUMERICAL INTEGRATION

5.1 INTRODUCTION

It was decided to model the dynamics of the three outer satellites of
Saturn (Titan, Hyperion and Iapetus) using a numerical integration. This
method has been employed by Sinclair and Taylor who have fitted an inte-

gration to astrometric observations made during the period 1967 to 1983.

In this chapter we describe the fitting of a numerical integration
to visual observations of the three satellites over the period 1874 to
1947. Such visual observations have not been analysed using numerical
integration before and this work represents a significant development in
the study of natural satellite dynamics. Apart from being a valuable ex-
ercise in its own right, it is an important preliminary to the goal of
linking pre-1947 wvisual observations with post-1967 photographic obser-
vations in a global solution involving a numerical integration of the

satellite orbits over a period of 120 years.

The reasons for adopting numerical integration as a dynamical model

are as follows
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(1) As long as we include all significant gravitational effects in
the force model then a numerical integration provides a dynamically con-
sistent representation of a satellite system. In this sense it has an
advantage over analytic theories whose series must be truncated after a
relatively small number of terms if they are to be convenient to use and

easy to develop.

(2) The number of free parameters in a numerical integration can be
restricted to the dynamically consistent minimum set : a position vector
and velocity vector for each satellite plus the masses of the disturbing
bodies and the form factors of the primary. In this way, we may avoid the
introduction of pseudo-arbitrary parameters which are adopted in some
analytic theories and which allow the least-squares fitting process to

give artificially small root-mean-square residuals.

(3) The analytic theory of Hyperion is a problem of great complexity.
Newcomb has placed it second only to the lunar theory in terms of the
difficulty of its formulation. It has been studied by Newcomb, Woltjer
and Message and is currently the subject of work by Message, Taylor and

Sinclair (see for example Taylor (1984)).

Numerical integration of the motion of Hyperion, by contrast, pre-

sents no more difficulty than for any other satellite and hence allows

observations of Hyperion to be analysed together with those of Titan and
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Iapetus. The results of such an analysis will not be prejudiced by the

shortcomings of an analytic theory.

(4) Once we have found a set of parameters with which the integration
gives the closest fit to the 6bservations, we may regard an integration
based upon these parameters as effectively representing the observations.
The information which was contained in the observations is now inherently

contained in the parameters in conjunction with the chosen integration

algorithm.

This means that we can use an ephemeris produced by the integration
as a model to improve the analytic theories of the satellites. Comparison
of the theories with the numerical integration may give clues which point
to deficiencies and omissions from the theories. This approach has been

used (Harper et al.) to identify Solar terms in the theory of Iapetus.

5.2 THE NUMERICAL INTEGRATION PROGRAM 'TITAN'

The numerical integration method used to generate ephemerides of the outer
satellites of Saturn is an 8th order central-difference Gauss-Jackson
scheme. It employs an iterative starting procedure. A predictor cycle
focllowed by a corrector cycle is used in the integration of the equations

for the coordinates of the satellites. In the integration of the equations
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for the partial derivatives of the coordinates with respect to the pa-

rameters, a predictor cycle alone is used.

The program which carries out the integration was written by Dr.A.T.
Sinclair at the Royal Greenwich Observatory (see acknowledgements) for
use on the Observatory's VAX 11-750 computer. It has been modified to
enable it to run on the IBM 3083 of the University of Liverpool Computer

Laboratory.

5.2.1 THE COORDINATE SYSTEM OF THE NUMERICAL INTEGRATION

We integrate the rectangular coordinates of the satellites in a Saturni-
centric coordinate system whose xy-plane is the equator plane of Saturn.
This is assumed to be a fixed plane over the time-span of the integration.
The x-axis of the system is in the direction of the ascending node of the
equator of Saturn upon the Earth's mean equator and equinox of 1950. The
transformation between the integration frame and the mean equator and
equinox of 1950 may thus be represented by a constant matrix as described

in a previous chapter.

The choice of the equator plane of Saturn as the xy-plane of the in-

tegration arises from two considerations.
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e The calculation of the perturbations due to the oblateness of Saturn

are simplified because of symmetry about the xy-plane.
e There are no other similarly preferred planes in the satellite system

and so any reference system is equally convenient from the computa-

tional point of view.

5.2.2 THE FORCE MODREL

The accelerations acting upon each satellite in the numerical integration

are as follows

(1) The gravitational attraction of Saturn regarded as a point mass.

This obeys a simple inverse square law which may be written as

1 a,® = - + m, .
[1] a; GM (1 ml) L
r.®
i
) . oy .th .
where , = Saturnicentric position vector of the i satellite
G = gravitational constant

M mass cof Saturn

Numerical Integration 121



m, = mass ratio of the ith satellite to Saturn

r, = | r,|.

1 —1

(2) The gravitational attraction of the other satellites.

The acceleration upon the ith satellite due to the attraction of the jth

satellite may be written

[2] a,, =GMm, { .- r, - . }
4] J o B — =1
3 3
r,. T,
1] J
. .th ,
where mj = mass ratio of the j satellite to Saturn
Ej = Saturnicentric position vector of the jth satellite
rij = the distance between the ith and jth satellites.

The first term is the gravitational attraction itself ; the second term
is called the 'indirect term' and arises from the fact that the origin
of the coordinate system is the centre of mass of Saturn and not the
barycentre of the entire system. The second term is the acceleration of
the centre of mass of Saturn relative to the barycentre due to the at-
. .th . . . . . ,
traction of the j satellite upon Saturn. This expression is derived in

appendix C.

Titan is the most massive satellite in the system and it perturbs Hyperiom
and Iapetus quite strongly. Indeed, the motion of Hyperion is character-

ised by the perturbation by Titan. Of the other satellites, Iapetus is
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the more massive and its perturbations on the motion of Titan and Hyperion
are included in the force model. Perturbations by Rhea are also included.
The most significant effect of Rhea is upon the secular rates of the nodes
and apsides of the outer satellites, especially Titan. In this respect,
it augments the perturbations due to the oblateness of Saturn. However,
to allow for periodic perturbations by Rhea in the motion of Titan, the
orbit of Rhea is assumed to be circular and fixed in the equator plane
of Saturn. In the reference frame of the integration, the position of

Rhea at time t is given by

0.0035232 cos L

>
1l

R
Y, = 0.0035232 sin L
Zp = 0
where L = 231°.761 + 79°.69004007 (t - 2411093.0)
we = b 107%.

The elements of Rhea are from Sinclair (1977) and Mps the mass ratio
Rhea : Saturn is the value used by Sinclair and Taylor (1985) and taken

from Tyler et al (1981).

Perturbations by Hyperion upon Titan were not included in the force

model as Hyperion is not massive enough to affect the motion of either

of the other satellites.

(3) The gravitational attraction of the Sun.
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We may regard the sun as a very distant and very massive 'satellite' of
, .t . .
Saturn. The acceleration of the i h satellite due to the attraction of

the Sun is given by

3 a,, =G Mm r - r, - T
[3] =is s { =s =i =s )
—_
r, T 3
is s
where us = mass ratio Sun : Saturn
., = Saturnicentric position vector of the Sun
, ,th ,
Tl = distance between the Sun and the 1 satellite.

As in the previous case, the second term is an indirect term repres-
enting the acceleration of the centre of mass of Saturn with respect to
the barycentre of the Sun-Saturn-satellites system due to the gravita-

tional attraction of the Sun. The derivation is given in appendix C.

The heliocentric coordinates of Saturn used in the calculation of the
solar perturbations are derived from the ephemeris of Saturn in Astron.
Pap. Amer. Eph. volume 12. The coordinates are transformed from the
ephemeris reference frame to that of the integration and then turned into
sets of Chebyshev coefficients covering successive 400-day intervals. The
use of Chebyshev series to calculate the coordinates of the Sun relative
to Saturn during the integration is intended to speed up the process of
interpolation whilst maintaining accuracy in the interpolated coordi-

nates.

(4) The oblateness of Saturn.

Numerical Integration 124



The disturbing function of Saturn due to its oblateness may be written

as (cf. Herrick (1972), chapter 18)

«KQ
n
= - 7

[4] Re GM/r 33 (ae/r) Jn Pn(w)
where a, = equatorial radius of Saturn

r = distance from the centre of Saturn

Jn = nth zonal harmonic coefficient of the potential field

w = z/r = latitude of the point above the equatorial plane

of Saturn

and Pn(w) is the Legendre polynomial of degree n.

The acceleration upon a satellite at this point due to the oblateness of

Saturn is

Since the coordinate system has been chosen so that Saturn is symmetric

about the xy-plane, all odd-numbered harmonic coefficients (J3, J. etc.)

5
disappear. Moreover, the ratio (ae/r)n and the harmonic coefficients Jn
rapidly become smaller for large values of n and so in practise we may

neglect harmonics beyond J4. Thus Re contains only contributions from

the n=2 and n=4 terms in the expression given above. We may write

[6] Re = -(GM/1) x {(ae/r)szPz(w) + (ae/r)“J4P4(w)}.
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The components of the acceleration upon the satellite are

X = BRe/Bx
[7] y = OR/3y
z = aRe/az

and we obtain the following expressions (cf. Sinclair and Taylor (1985))
for the acceleration. The identities used to simplify the Legendre po-

lynomials are derived in appendix D.

where A (GM/r®) {J, (a /)2 P'_(w) +J, (a_/r)* P'_(w)}
2 e 3 4 e 5

- 2 2 pt 4 pt
B (GM/r*) {J2 (ae/r) P 2(w) + J4 (ae/r) P 4(w)}
A
k = the unit vector in the z direction

and P'n(w) denotes the first derivative of the Legendre

polynomial with respect to its argument.

5.2.3 PARAMETERS OF THE NUMERICAL INTEGRATION MODEL

A number of parameters of the numerical integration are considered to be
free parameters : their values may be altered from omne integration run

to another, usually as a result of a least-squares correction process
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involving comparison of the integration with data or with analytic the-

ories of the motions of the satellites. These parameters are of two types.

1. Elements of satellite orbits. There are six arbitrary parameters in
the motion of any satellite ; these may take the form of classical
orbital elements, but in a numerical integration it is more convenient
to use the position and velocity vectors of the satellites at some
fixed epoch. For each satellite there are three position components
and three velocity components. These are equivalent to six orbital
elements ; indeed, it is a simple matter to convert classical elements
to position and velocity vectors and vice versa (Herrick (1971) gives
a particularly lucid account of the equivalence of the two different

types of parameter set and the transformation between them).

Since we are dealing with three satellites, their orbital elements

provide us with eighteen free parameters.

A

Mass and form-factor parameters. In their comparison of astrometric
observations of the outer satellites with a numerical integration,
Sinclair and Taylor (1985) also treated the masses of Titan, Iapetus
and Saturn as parameters to be determined by least-squares iterative
fitting. In addition the dynamic form-factors of Saturn, J, and J

2 4

were included as free parameters.

The set of free parameters now numbers 23.

e The position vector and velocity vector of Titan.
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e The

° The

° The

e The

. The

. The

position vector and velocity vector of Hyperiom.

position vector and velocity vector of Iapetus.

mass ratio Titan/Saturn.

mass ratio Iapetus/Saturn.

mass ratio Saturn/Sun.

dynamic form factors J2, J4.

These are the free parameters in the current work.

5.2.4 PARTIAL DERIVATIVES OF THE COORDINATES

In addition to the coordinates of the satellites, we require the partial

derivatives of the coordinates with respect to each of the free parameters

of the integration model. These partial derivatives are used in the de-

termination of the parameters by fitting the integration to observations

or to analytic theories.
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The partial derivatives are calculated by numerical integration in the
same way as the coordinates. From the force model we may deduce ex-

pressions for the second time derivatives of the partial derivatives, i.e.

d2 39X,
— | i
2
dt ~qu
where Xi is any of the 9 satellite coordinates

9 is any of the 23 free parameters.
The integration scheme thus incorporates 9 coordinates and 9x23 = 207
partial derivatives. The partial derivatives are not required to the same

accuracy as the coocrdinates and so to save computing time, they are in-

tegrated using a predictor step alome.

If we write

_ 2 2
[9] F, = dX_/dt

that is, Fi is the acceleration of the coordinate Xi given by the force

model, then we have

I
QQ
[
+

) .
[10] d %, =i D S

2 | .
dt aqk aqk = BXj aqk
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The first term on the right-hand side is the explicit derivative of Fi

with respect to the parameter In the case where 9 is a component of

A -
an initial position or velocity vector, this will be zero since the ac-
celeration is not an explicit function of the initial position and ve-
locity components. However, there are explicit derivatives with respect

to the free parameters which correspond to masses and form-factors since

these parameters do appear directly in the force model.

The second term on the right-hand side represents the implicit de-
pendence of Fi upon the parameter e via the coordinates. It contributes

to all the partial derivatives.

The starting values of the partial derivatives in the integratiom are

[11] Xy

aqi

1

where 9 is the initial value of the coordinate Xi and

[12] d axj = 1
dt\aq,
j

where qj is the initial value of the velocity component de/dt.

All other starting values of derivatives are zero.
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5.3 ITERATIVE FITTING METHOD

The parameters of the numerical integration model were determined by
comparing visual observations of the three satellites with the predicted
positions from the integration. The differemnces between the observed and
computed positions were combined with the partial derivatives described
in previous sections to produce an equation of condition for each obser-
vation which expresses the (small) corrections to be made to the parame-
ters din terms of the observed-minus-computed residual. Repeated
application of this method yields parameter sets which give successively
better fits to the observations. This is the basis of iterative least-
squares differential correction, the technique which is used in this work
to fit the numerical integration to the observations. The stages in the

process may be enumerated.

(1) We must obtain a starting set of parameters that will give a reason-
ably close fit to the observations. The differential correction process

relies upon the first-order approximation

Ap = 3p Ae, + 3p Aey+ ... + 3p Aey
de, qu aqv

where p is the observed quantity and Ap is its observed-minus-computed
residual, and Ael, Aez, Caey AeN are the small corrections to the param-

eters e..
J
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The starting values must thus be obtained from a model which already
matches the observational data quite closely. The analytic thebries of
the satellites are chosen for this purpose, specifically the theories
which Sinclair and Taylor have fitted to astrometric observations cover-
ing the period 1967 to 1982. As an initial approximation, the Saturni-
centric rectangular coordinates of each satellite are calculated from the
analytic theories at intervals corresponding to 10° arcs for several dates
around the chosen epoch of the integration. The velocity components are
calculated using a 7-point Lagrange interpolation formula differentiated
once with respect to the interpolation argument. The initial values of
the mass parameters and the dynamic form factors of Saturn are taken from

the work of Sinclair and Taylor (1985).

Numerical integration is then used to calculate the positions of the
satellites at two thousand random dates in a twenty-year interval centred
on the adopted zero epoch of the integration. The Saturnicentric rectan-
gular coordinates of the satellites are compared with the coordinates
given by the analytic theories for the same dates. Equations of condition
are constructed for each of the nine coordinates § (three from each sat-
ellite) incorporating the difference

AZ =& 1

Analytic theory Numerical integration

expressed in terms of the corrections to the parameters of the inte-
gration. Solution of the equations of condition yields an improved set
of parameters for the integration. This process of fitting the integration

to the analytic theories is repeated until convergence is obtained i.e.
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the corrections to the parameters become very small. At this point, the
positions of the satellites given by the numerical integration closely
match those given by the analytic theories and are thus close to the real

satellite system.

A set of random dates is used in this process in order to aveid a
'sampling effect' whereby significant short-period terms in the analytic
theories are masked because their period matches the sampling period. A

different set of random dates is generated for each iteratiom.

The mass parameters and form factors are not allowed to vary at this
stage because solution for these parameters in addition to position and
velocity components by comparison with the theories would give only the
values implicit in the theories and these were not judged to be better

than the initial values adopted for the integration.

We may now begin the task of fitting the integration to the observatioms.

(2) The Saturnicentric rectangular coordinates of the three satellites
are calculated by numerical integration at intervals of 0.25 days for a
period sufficient to cover all the observations to be used. In practise
the integration is carried out for forty years either side of the =zero
epoch in two runs : one from 1910 to 1950 and the other from 1910 to 1870.
The coordinates of the satellites at the moment of each observation are

obtained by interpolation while the integration is in progress. A
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fourth-order interpolation formula is employed, both for the coordinates
and for the partial derivatives of the coordinates with respect to the

parameters.

(3) The coordinates of the satellites are transformed from the reference
frame of the integration, based upon the equator plane of Saturn, to the
true equator and equinox at the date of the observation. The partial de-
rivatives are also transformed. This transformation consists of two ro-
tations : the first is from the reference frame of the integration to the
mean equator and equinox of B1950 and is a fixed transformation ; the
second is from the mean equator and equinox of B1950 to the true equator

and equinox of date. This is different for each observation.

We now have the Saturnicentric coordinates of each satellite referred
to the true equator and equinox of date. We add the topocentric position
vector of the centre of Saturn to obtain the topocentric positions of the
satellites. From these, we may deduce the Right Ascension and Declination
of each satellite and of the centre of Saturn's disk, and hence the po-
sition angle and separation of any of the four objects with respect to
any other. We calculate only the datum required by the observation, to-
gether with the partial derivatives of the datum with respect to the pa-
rameters of the integration. Thus we may construct an equation of
condition for each observation by combining the partial derivatives with
the residual, i.e. the difference <Observed datum> minus <Com-

puted datum>.
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(4) Each observation yields an equation of condition. These are collected
and combined to give a set of normal equations according to the theory
of least-squares. An equation of condition is added to the mnormal
equations only if its 0-C residual is less than a specified rejection
limit. This rejection limit was initially set at a nominal figure of 2.0
arc-seconds and this was later adopted as the standard limit as the
root-mean-square residuals converged to a value of approximately 0.6
arc-seconds. Thus the rejection limit was 3 times the RMS residual, cor-

responding to rejection of 0.3% of errors which are normally distributed.

The normal equations may now be solved to give the corrections to the
parameters. As part of the solution process, the standard errors of the
parameters and their cross-correlations may be determined. It is also
possible to fix one or more of the parameters if it is evident that there
are strong correlations. This was indeed found to occur : for example,
the mass of Saturn was highly correlated with the semi-major axes of the
satellite orbits and so it was decided to keep a fixed value for Saturn's

mass.

It was also found that the correction to Saturn's J4 form factor was
several orders of magnitude larger than any reasonable value of the pa-

rameter itself, and so this was also kept constant.

(5) The 0-C residuals are analysed according to satellite pair and datum
type (position angle or separation). The root-mean-square, mean and

standard deviation are calculated and a histogram drawn to show the dis-
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tribution of residuals. This is a useful indication of the progress of
the iterations : clearly, we want the residuals to show a Gaussian dis-
tribution about zero, with a very narrow peak. If the iteration scheme
is not working then this will be shown by the histogram. Example histo-

grams are given in a later section where the results are discussed.

When the corrections to the parameters are small compared to the
standard errors then the iterative process is complete. Further iter-
ations will not significantly improve the fit of the integration to the
observations. However, when the corrections are larger than the standard

errors, the process begins again at stage (2)

5.4 RESULTS. (1) PROBLEMS WITH NON-CONVERGENCE IN THE FIRST PHASE

In practise, the least-squares fitting process was not as straightforward
as the previous section might suggest. There was some difficulty in ob-
taining convergence in successive iterations whilst fitting the numerical
integration to the analytic theories during stage (1) of the iterative
procedure described previously. We may denote the difference between the
position of each satellite given by the numerical integration and that

given by the analytic theory as
g = |

£Theory ) £Integration
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At each iteration, a graph of the 2000 & values plotted against time for

each satellite showed a clear systematic trend.
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Figure 11. Integration-minus-theory residuals (schematic)

The maximum value of £ increases linearly as a function of [t - toi, that
is, in proportion to the distance from the initial epoch of the inte-
gration. This is the point at which we seek to determine starting values
for the position and velocity of each satellite. The effect was most

marked for Hyperion. When Hyperion was removed from the iterative process,

convergence was achieved quite easily for Titan and Iapetus alone and

satisfactory starting conditions were obtained for these satellites.
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Since the analytic theory of Hyperion is such a complex problem, the
short-period perturbations by Titan have been omitted from the computer
program developed by Sinclair and Taylor to represent its motion ; these
terms are generated separately by numerical integration and may be used
as a look-up table in conjunction with the purely analytic part of the
theory. However, these terms were not available for the time interval
covered by the present study (1870 to 1947) and so the analytic theory
of Hyperion used here is not complete. It is probable that this omission
is the cause of the non-convergence ; we are trying to fit a dynamically
consistent model, viz. the numerical integration, to one which is not
consistent. The fitting process attempts to compensate by over-correcting
the elements of Hyperion in the integration in successive iterations, and
the result is divergence of the integration model from the analytic the-

ory.

Titan is adversely affected by this because its parameters are linked
to those of Hyperion by virtue of its large perturbations upon Hyperiom.
In mathematical terms, we may observe that equations of condition arising
from the coordinates of Hyperion contain partial derivatives with respect
to the parameters of Titan. Hence Titan's parameters may be subject to
large and spurious corrections when Hyperion's position is allowed to

diverge.

The solution adopted for this problem was to omit Hyperion from the
iterative process of fitting the numerical integration to the amalytic
theories. Starting parameters were obtained for Titan and Iapetus by

iteration, while those for Hyperion were calculated from the analytic
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theory without iteration. If these parameters were subsequently found to
be inadequate then Hyperion could be omitted from comparison of the in-

tegration with observations.

Another possible cause for the divergence may be considered : the
analytic theories employed as a reference model have been fitted to modern
(post-1967) observations. The orbital elements, and in particular the
longitude of the satellite at the epoch XO, are thus the best values for
the period 1967 to 1983. In fitting the integration to these theories at
the epoch 1910, we may be extrapolating the theories beyond their range
of validity. This will be evident if the mean motions adopted in the
theories are slightly in error. The mean motions used are values deter-
mined by Struve and Woltjer on the basis of pre-1935 observations covering
a rather short time, 30 years at most. In the present work, the theories
have been extended backwards some 70 years from the epoch of the data to
which they have been fitted and so any error in the mean motion will be
magnified as an error in the longitude of the satellite. The solution to
this problem is to fit the theories to all the available data to obtain
a better value of the mean motion, but this is a considerable exercise
in its own right and it was not thought to be appropriate to undertake

it in this context.
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5.5 LEAST-SQUARES CORRECTION THEORY

The least-squares correction process is based upon the minimisation of
the sum of the squares of the observed-minus-computed (0-C) residuals
which are formed when the dynamical theory is compared with observations.

Each 0-C is the right hand side of an equation of condition

1 i i i i

[13] 3p 81 + + a—p SN = Py = P. = Ap
ael SeN

where aj = Aej = (ej)true - (ej)conjectured'

We wish, therefore, to minimise the function

[14] p = (Api)2

,€.. This means that the

with respect to each of the corrections ¢ N

1500

derivatives of p with respect to each sj must be zero. That is,

I
=
-
2z
~

[15] 3P/38j =0 (J

This provides us with the set of N equations called the normal equations

[16] 418 + RN + aNEN T bk

where
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[17] a, = Nooapt spT

i=l aej aek
[18] by = g sp-  Ap’.
L’;' ae

From these equations we note that the normal matrix (i.e. the matrix of

the ajk's) is symmetric and positive definite. This implies that
a,, = a,, and a,, > 0. The corrections e, may be determined by invertin
ko TkJ 33 K " Y &

the normal equations, which can be written in matrix notation as

[19] aeg= b
Clearly,

-1 _
[20] E= a'b = sb

where s is the inverse of the normal matrix.

5.5.1 STANDARD ERRORS

In a real physical system described by a parameterised model such as a
numerical integration, there exists a set of parameters { e °} which best

describes the system. This set is, as it were, the 'true' set of parame-
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ters and it is the set which would be determined if we possessed obser-

vations of the system which contained no errors.

In practise, of course, observations are prone to errors of several kinds.
The most common (and most amenable to analysis) are random in nature and
are due to any number of unforeseen and unpredictable effects on the part
of the observer, his measuring apparatus and the conditions in which the
observations are made. Such random errors are characterised by the fact
that they form a Gaussian (normal) distribution when analysed in large
numbers. Thus each observation consists of two parts : the 'true' value
of the observed quantity in the sense used above, which we denote as
0

Vs and an error ni taken from a normal distribution. The value observed

in practise is vy and we may write

[21] vy, =y, +n,.

The crux of the problem facing us is this : we do not know the values of

1
the n,s.
The second type of error is not random. It is systematic in the sense
that it affects the all observations in a similar way. It may be additive
so that we have

[22] vy, =y, +n, +&

where £ is a constant, or it may be multiplicative sc that
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[23] y; = B(yi° +n))

where P is a constant, or it may be a combination of both types. In gen-
eral, a systematic error has its cause in some feature of the experimental
method which can be explained in physical terms without reference to
random behaviour. As an example, consider a micrometer used to measure
angular separation between satellites. If, whilst measuring separation
between a satellite and a bright planet, the observer repeatedly over-
shoots the far limb of the planetary disk with the movable wire and does
not realise the fact, then there will be a trend for the measures to be
too large by a small amount whose value has a non-zero mean. Of course,
careful observational technique is designed to minimise such effects but
there may remain some systematic errors : a micrometer whose screw-thread
has been incorrectly calibrated along part of its length may give rise
to systematic multiplicative errors i.e. errors of scale. Moreover, such
errors may be dependent upon the conditions under which the micrometer
is used : ambient temperature changes causing different parts of the

device to expand at different rates, to cite one example.

Systematic errors may manifest themselves in the 0-C residuals. If
this is the case, we can (and must) take steps to eliminate them by

tracking down their physical cause.

It may, however, be more likely that the parameters of the model will
adjust to incorporate these errors during the least-squares fitting pro-
cess. Continuing the example of scale errors in separation measures

if the angular separations within a satellite system are systematically
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measured too large or too small by a given factor then a least-squares
procedure based upon osculating orbital elements may respond by converg-
ing to a solution where the semi-major axes of the satellites are all too
large or too small by a similar factor. If the mass of the primary is also

a free parameter, it may also be in error by a corresponding factor.

We must, in the first instance, assume that any errors in the obser-
vations are random. After we determine the corrections to the parameters
of the model using the least-squares method, we may then calculate the
likely errors in the parameters due to errors in the observations upon

which the solution is based. We quote the parameters in the form

where e is the calculated value, and we are confident that the 'true'

value lies in the interval e-8e to e+de with a probability p. That is,

[24] e - 8e < e < e+ de

with probability p.

Following Brouwer and Clemence (1961, p.226) and Jeffreys (1939,

p.61) we quote the standard error of each parameter, denoted by o, which

is the value of 8e corresponding to p = 0.683. That is to say, it is 68.3%
certain that the 'true' value of a parameter will lie within one standard
error of its value determined from data whose errors are distributed in

a random fashion following a normal distribution.
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We may calculate the standard errors of the parameters as follows
after solving the normal equations to determine the corrections to the
parameters, these corrections are substituted into the original equations
of condition and the residuals calculated. For example, if a particular

equation of condition is
il’1 e iN"N
(where we have written uij for apl/aej)
then the residual we require from the equation is

[25] v, T a8 + ... + %NEN Ap

where € ,e.. are the values of the unknowns (corrections to the pa-

1’ N

rameters) obtained by solving the normal equations.

We then form the standard errors in the residuals E from

[26] E = {Z:viz/(m-n)}

t

where m is the number of equations of condition and n is the number of

free parameters.

The standard error of the correctionsj to the parameter ej, and hence

to the parameter itself, is then
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[27] o, =EVS,,
J J]
where Sjj is the jth diagonal component of the inverse of the normal ma-

trix.

If we require an error estimate with a different level of probability,

we multiply the standard error by a factor k such that p = erf(k/v2).

The probable error corresponds to a probability p = 3 and we find that

k = 0.6745 (cf. Brouwer and Clemence (1961) p.226). Thus the 'true' value
of the parameter ej is as likely to lie within the range ej- 0.67450j to
ej+ 0.67450j as it is to lie outside it. We present below a table of

probabilities as a function of multiples of the standard error.

k p x 100%
0.5 38.3%
0.6745 50.0%
1.0 68.3%
2.0 95.4%
3.0 99.73%
4.0 99.9937%
5.0 99.999943%
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5.5.2 CORRELATIONS BETWEEN PARAMETERS

It is implicitly assumed in the least-squares correction process that the
free parameters are independent of one another. That is to say, small
corrections can be applied to any of the parameters independently and

there are no relationships of the form

where e,, &, are the corrections to parameters e ej and o, B are con-

In practise, we often find such relationships and these may be explained
in terms of the physics of the problem. Consider, for example, the case
where the major semi axis of a satellite orbit and the mass of the primary
are both free parameters in, say, a numerical integration model. These
are related, together with the mean motion of the satellite, by Kepler's

third law

[29] n%a® = kM

where k? is the gravitational constant and we neglect the mass of the
satellite itself. If we rewrite this equation in terms of small changes

then we have

[30] 2An + 3Aa = AM.
n M

ol
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Now the mean motion of the satellite will be well-determined by a
series of observations spanning several decades, an interval equivalent
to hundreds of orbital periods of the satellite. Thus the value of An is
far better determined than either Aa (which depends, among other things,
upon the calibration of the micrometer screw used to make separation
measures) or AM. This is precisely the situation which gives rise to
correlations : a linear combination of two unknowns is better-determined
than either of the individual unknowns. Aa and AM are not independent
since the solution will adjust them to minimise the change to An whose
value is, as it were, a 'known constant' of the system. Thus we may expect
to find correlations between the mass of the primary and the major semi

axes of each of the satellites.

We may detect and quantify the correlations in a least-squares cor-
rection process by inspection of the normal matrix and its inverse. We

define the correlation coefficient between si and Ej to be

[31] Cij = Sij / /(Siix Sjj)
where S denotes the inverse of the normal matrix. The correlation coef-
ficienf lies between -1 and +1 and it is normally close to zero i.e. the
off-diagonal components of S are much smaller than those in the diagonal.
However, when Cij is nearly %1 then Eiand sj are closely correlated and
it may prove difficult to obtain a solution for both of them simultane-

ously. We may show that the quantity

[32] Kij = aij / /(aiix ajj)
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also approaches *1 when a pair of parameters are correlated. Suppose we

have a set of equations of condition

for 1 =1 to M. Suppose also that e. and £, are linearly dependent so that

1 2

for some constant ¥, o, = Xmil(or very mnearly) for all equations of
condition. Consider the components 811> 899 and 859 in the normal matrix.
We see that
[33] aj, = Ball

- 2
[34] 8y, ¥ aiq
hence

= 2 = = 4+
[35] Kig Xall/(a11 x ¥ all) sgn aj, +1.

It is interesting to note that ¥ may be found from

[36] v A/ d99/815"

Brouwer and Clemence (1961, p.231) present a method whereby the normal
equations are re-written in order to solve them for the combination
€4 + st. Alternatively, we may choose to remove one of the parameters
from the system, generally because we have a better determination of it

from another source. This may be achieved quite easily by operating upon

the normal equations. Suppose we wish to hold the value of e constant.
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This means that we must force the normal equations to yield & = 0. We
set all the components of row k and column k of the normal matrix to zero

except for the diagonal component, which we set to unity.

[37] a,, =a ., =0 for i=1 to N except i=k

[38] 8, =1

t . 1 .
and we set the k b component of the right-hand-side vector b to zero.

This does not alter the normal matrix with respect to the other free pa-

rameters.

5.5.3 CONVERGENCE OF THE ITERATIVE PROCESS

We may regard the iterative correction process upon the parameters of our
model as complete when certain criteria are met. Clearly, we wish suc-
cessive sets of parameters to give an increasingly close fit of the model
to the observational data. We may quantify this in terms of the root-
mean-square (RMS) residuals of the data. The RMS residuals should decrease
in size, settling to a constant value as convergence is attained. The

number of data included in the RMS residuals must not decrease : as the
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closeness of the fit improves, we expect more observations to be included

within the chosen rejection limit.

During each least-squares correction cycle, we may also consider the size
of the corrections to be applied to the parameters. Corrections should
decrease in size in successive iterations. For each of the free parameters
e., we compare the correction sj with the standard error cj. When the
correction is much smaller than the standard error, we may regard the
correction as negligible. Thus when, say, Isj|/0j << 0.01 for all of the
free parameters, the correction process is complete. Further iterations
will not increase the accuracy with which the parameters can be deter-

mined.

5.6 RESULTS (2) : SOLUTION FOR POSITION AND VELOCITY

The first trial involved fitting the numerical integration to visual ob-
servations of Titan, Hyperion and Iapetus by solving for the position and
velocity vectors of the three satellites and the masses and J parameters.
The initial values of the masses and J parameters were those of Sinclair
and Taylor (1985) while the initial values of the position and velocity
were those obtained by fitting the integration to the analytical theories

as described in section 5.4

The initial parameters gave quite a good fit to the observations.
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Pair RMS Obsns %)

Saturn-Titan 1'".069 299/321 93
Saturn-Hyperion 1".958 905/938 96
Saturn-Iapetus 0".853 315/321 96
Titan-Hyperion 1".576 688/766 90
Titan-Iapetus 0".696 820/832 99

All observations with an 0-C residual of less than 5".0 are included.
The fit for Hyperion is not as good as that for Titan and Iapetus because
its initial parameters were not determined by iterative fitting to the

theory. Nevertheless, 97% of all data are included in the table above.

When the normal equations were constructed from the residuals, a
number of significant correlations were found. Among these, the mass of
Saturn and its J2 form factor were both strongly correlated with the in-

itial position and velocity components of the satellites. In addition,

the corrections to be applied to J, and the mass of Iapetus were larger

4
than any physically reasonable value : the corrected mass of Iapetus would
have been negative while the corrected value of JA would have exceeded
JZ. Accordingly, it was decided to fix the masses and J's and a solution

was made for the position and velocity components of the satellites only.
There were again a number of correlations. The x and y position com-
ponents correlated strongly with the x and y velocity components for each

satellite.

Titan x_ with y'
) o

ith x'
v, wi o
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The numerical integration was repeated using the corrected parameters.
The 0-C residuals resulting from the comparison of this integration with

the observations were as follows.

Pair RMS Obsns (%)
Saturn-Titan 2".413 36/321 11
Saturn-Hyperion 2".430 123/938 13
Saturn-Iapetus 0".827 315/321 98
Titan-Hyperion 2" . 468 351/706 50
Titan-Iapetus 2".397 594/832 71

The rejection limit, as before, is 5".0. The number of observations
falling within this limit is much reduced and the RMS residuals are lar-
ger, with the exception of Saturn-Iapetus data. Clearly, the least-
squares correction process has failed : the corrections applied to the
parameters of Titan and Hyperion contain serious errors which are due to

the large correlations.
The correlations between initial position and velocity components may
be explained by postulating that some function of the position and ve-

locity of each satellite is better-determined by the observations than
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any of the six individual components. If we consider the motion of a sa-
tellite in a nearly circular orbit in the xy-plane (this is approximately

true for all the satellites in the numerical integration) then we may

write
X = a cos(nt + £) + O0(e)
y = a sin(nt + ) + 0(e)
and
x' = -na sin(nt + &) + 0(e)

y = +na cos(nt + €) + 0(e).

Neglecting the eccentricity of the orbit we may write

This will be true at each point in the orbit and so the initial position

and velocity components will be related thus

It is significant that the strongest correlations in the least-squares
fitting process are between X and y'o and between Yo and x'o. This leads
us to suspect that relationships such as those above are indeed affecting

the initial position and velocity components.
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It would be more instructive to employ as the unknowns a set of pa-
rameters with more direct physical significance than position and veloc-
ity components. Therefore we turn our attention to the osculating

elements of the orbits.

5.7 USE OF OSCULATING ELEMENTS AS AUXILIARY PARAMETERS

The osculating elements of the orbit of a satellite at any instant are
the elements of the elliptic two-body orbit in which the unperturbed po-
sition and velocity of the satellite are the same as the actual position
and velocity of the satellite at the epoch. There exist standard formulae
for calculating osculating elements from a given set of position and ve-
locity components, and vice versa. The most lucid exposition is that of

Herrick (1971, chapter 4).

We wish to replace the position and velocity components of each satellite
by the osculating elements as 18 of the parameters to be determined by
comparison of the integration with the observations. To do this, we must

change the iterative scheme, which now becomes
1. Execute the numerical integration with the current set of position

and velocity parameters and compare this with the observations to

obtain the 0-C residuals and equations of condition in terms of cor-
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rections to the position and velocity parameters. This is exactly the

same as before.

2. Convert the position and velocity components of each satellite at the
zero epoch of the integration into osculating elements, and transform
the equations of condition so that they express the 0-C residuals in
terms of corrections to the orbital elements. This transformation is
carried out by use of partial derivatives of the position and velocity
components with respect to the osculating elements. If we write the
three position and velocity components of each satellite as the 18
components of a state vector & and the osculating elements as the 18

components of a vector e then

- /8
[40] Aii agi Aej.

gt 3ej
This allows us to replace each AEi in the equations of condition by
a linear combination of the Aej's. Each of the equations is trans-

formed from

[41] 3p AEl + ...+ 9p AElS + 3p AJ2 + ... = Ap
3¢, 3., 3J,

to

[42] 38 Ael + .. + EE Ae18 + Eg AJZ + = Ap.
e, 8e.g 8J,
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We note that the derivatives with respect to the masses and J
factors are unchanged by the transformation since these parameters
are the same whether we use position and velocity or osculating ele-
ments. We may write the general rule for the transformation of the

coefficients of the equations as

[43] 3p _

6 op ng.
Bek J;laij aek

The transformation coefficients agj/ae are mostly zero : we need

k
only calculate the derivatives of the position and velocity compo-
nents of each satellite with respect to its own osculating elements.
The required derivatives may be readily obtained from the classical
formulae of two-body motion. Herrick (1972, section 15B) gives an
account of the calculation of these derivatives using a method based

upon the radial, transverse and binormal vectors of the orbit of the

satellite.

3. Construct a set of normal equations from the new equations of condi-
tion, applying a suitable rejection limit (in this case, 2".0) to the

0-C residuals as before.

4. Solve the normal equations to determine the corrections to the oscu-

lating elements (and the masses and J parameters if required).

5. Apply the corrections to the elements and convert them tc instanta-
neous position and velocity components for each satellite using

standard two-body elliptic formulae. The position and velocity vec-
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tors thus obtained are the current parameters for a new iterative

cycle beginning again at (1)

The osculating elements used in this scheme are referred to the co-
ordinate system of the integration. Thus the inclination of each satel-
lite's orbit is with respect to the equator plane of Saturn. Likewise,
the node, apse and mean longitude are measured in the equator plane of
Saturn from the x-axis of the integration coordinate system to the as-
cending node of the orbit upon the equator plane, and thence in the orbit

plane.

Q Equator of
Saturn

Orbit of
satellite Earth’s Mean

Equator 1950-0

Figure 12. Angular osculating elements
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5.8 RESULTS : (3) SOLUTION FOR OSCULATING ELEMENTS

A number of trials were carried out using various sets of free parameters.

They are represented in diagram form below.

Initial
Parameters

2 iterations on

/ elements

3 iterations on 3iterations on
elements elements+ ug
1iter. on 1 iter. on 5 iters. on
elements+ u¢ elements + ig + fig elements + it + Jo
TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4

Figure 13. Solutions for osculating elements

In this context, 'element' signifies the set of 18 parameters comprising
the six osculating elements for each of the three satellites. uT and us
are the mass ratios Titan/Saturn and Saturn/Sun respectively and J2 is

the dynamical form-factor of Saturn.
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As an example, consider trial 3. Starting with the initial parameter
set (obtained by fitting the integration to the analytic theories) we
carry out the correction process upon the elements twice, then include
Hop for three correction cycles and finally include L in one cycle. Thus
trial 3 consists of six iterations incorporating an increasing number of
free parameters. This approach allows us to monitor the behaviour of the
least-squares process as new parameters are added : when convergence is
attained with a given parameter set, we may increase the set to include

further parameters of physical interest.

Trial 1 Five iterations on the osculating elements alone

The correction process converged quite rapidly and the RMS residuals after
the 5th iteration are given below. The rejection limit for individual O-C
residuals is 2".0. Results are given for both position angle and sepa-
ration measures. Note that the position angle residuals are in fact sAp

and thus they may be compared directly with the separation residuals.
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Objects observed Datum |Observations RMS Mean
Saturn - Titan P 160 of 176 0".460 -0".105
Saturn - Titan S 137 of 145 0".509 0".157
Saturn - Iapetus p 154 of 162 0".747 0".064
Saturn - Iapetus S 153 of 159 0".716 0".462
Saturn - Hyperion P 458 of 473 0".743 -0".167
Saturn - Hyperion S 433 of 465 0".871 0".514
Titan - Tapetus p 411 of 417 0".385 0".009
Titan - Iapetus S 407 of 415 0".357 0".186
Titan - Hyperion P 344 of 355 0".452 -0".046
Titan - Hyperion S 340 of 351 0".530 0".107
Iapetus - Hyperion P 13 of 13 | 0".352 0".140
Iapetus - Hyperion S 13 of 13 0".245 0".055

A total of 3023 out of 3144 (96.2%) data fall within the rejection limit.
The RMS residuals compare well with those obtained by Sinclair and
Taylor (1985) who fitted a numerical integration to photographic (astro-

metric) observations covering the period 1967 to 1982. They obtained

Titan - Hyperion 0".33

Titan - Iapetus 0".22.

These figures are to be compared with the values obtained by combining

the sAp and As residuals above, which yield

Titan - Hyperion 0".49

Titan - Iapetus 0".37.
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The residuals from wvisual observations are larger than those from
photographic data by about 50%. This can probably be explained by the
lower accuracy of the visual observations i.e. the random errors of ob-

servation are larger for the older data.

We must recall that the solution has been obtained by fitting to Sa-
turn - satellite data as well as inter-satellite data, while Sinclair and
Taylor used only inter-satellite measures. The RMS residuals for measures
relative to Saturn are significantly larger than those for inter-satel-
lite measures. This is due in part to the observational errors introduced
in estimating the centre of the disk of Saturn when making separation and
position angle measures relative to the planet. Inclusion of Sa-
turn - satellite measures may therefore be expected to degrade a solution

for the parameters of any dynamical model.

It may be more realistic to compare the residuals of Sinclair and
Taylor with those obtained by fitting the integration to inter-satellite
measures alone. Of the 3144 observations included in this study, 1580 are
relative to Saturn while 1564 are inter-satellite measures : by excluding
the Saturn - satellite measures we reduce the data set by 50% and advance
the date of the earliest observation by 10 years, reducing the time span
by 20%. The question of whether to employ Saturn - satellite data is thus
a matter of compromise. A weighting scheme is probably the optimum sol-
ution but this introduces problems of its own and is not included in this

work. It is deferred to the section on suggestions for further work.
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Trial 2 Determination of the mass of Titan

This trial consisted of six iterations. During the first two, only the
osculating elements were allowed to vary and so these iterations are the
same as those of trial 1. Then the mass ratio Titan/Saturn was included
in the set of free parameters and a further four iterations were carried
out. Convergence was obtained (in the sense described in section 5.7) and

the RMS residuals at a rejection limit of 2".0 were

Objects observed Datum |Observations RMS Mean
Saturn - Titan P 160 of 176 0".459 -0".103
Saturn - Titan S 137 of 145 0".507 0".159
Saturn - Tapetus P 154 of 162 0".747 0".064
Saturn - Iapetus S 153 of 159 0".715 0".463
Saturn - Hyperion P 457 of 473 0".731 -0".176
Saturn - Hyperion S 435 of 465 0".878 0".523
Titan - Iapetus P 411 of 417 0".385 0".009
Titan - Iapetus S 407 of 415 0".357 0".185
Titan - Hyperion P 345 of 355 0". 464 -0".040
Titan - Hyperion S 340 of 351 0".532 0".117
Iapetus - Hyperion p 13 of 13 0".334 0'".103
Iapetus - Hyperiom S 13 of 13 0".251 0".073

The mass of Titan was determined to be

up = (2.36659 % 0.00027) x 1074,
The final RMS residuals are almost exactly the same as those in trial 1.

Three more observations fall within the 2".0 limit than in trial 1 though

one Saturn-Hyperion measure is lost. Thus, statistically speaking, this
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solution is based upon a data set of the same size as that used in trial

1.

Trial 3 Determination of the mass of Saturn

This trial proceeded in the same way as trial 2 except that in the 6th
correction cycle, the mass ratio Saturn/Sun (us) was also allowed to vary.
The free parameters were thus the osculating elements of Titan, Hyperion

and Iapetus, the mass ratio Titan/Saturn and the mass ratio Saturn/Sun.

Upon carrying out the least-squares correction process on this pa-
rameter set, a number of significant correlations were found. The most
notable were those between the mass of Saturn and the major semi axes of
each of the satellites (as explained in section 5.5.2). To illustrate the
effect of such correlations upon the solution, the corrections calculated
by the least-squares method were applied to the parameters and a numerical
integration was executed with the new parameters. This was compared with
the observations and a set of RMS residuals calculated. The rejection

limit in the table below is 2".0.
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Objects observed Datum | Observations RMS Mean
Saturn - Titan P 5 of 176 1".026 -0.514
Saturn - Titan S 4 of 145 1".352 -0.321
Saturn - Hyperion P 6 of 473 1".366 -0.395
Saturn - Hyperion S 6 of 465 1".354 0.369
Saturn - Tapetus P No observations within the limit
Saturn - Iapetus S No observations within the limit
Titan - Iapetus P 7 of 417 1".256 0.044
Titan - Iapetus S 4 of 415 1".186 -0.398
Titan - Hyperion P 8 of 355 1".022 0.085

| Titan - Hyperion S 5 of 351 1".307 -0.165

Virtually no observations fall within the limit, and of course the RMS
residuals do not possess any statistical significance. Clearly, the cor-
relations implicit in the normal equations cause the corrections to some
of the parameters to be in error. Accordingly, the value of the mass-

ratio Saturn/Sun was held fixed in the subsequent trial.

Trial 4 Determination of Saturn's J2

This trial was carried out as follows, starting with the initial parameter

set.

1. Two iterations solving for osculating elements only.

2. Three iterations solving for elements plus Up-

3. Five iterations solving for elements plus U plus JZ.
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Convergence was obtained rather slowly following the introduction of J2
as a free parameter, since several other parameters (notably major semi
axes) underwent further changes t6 accommodate the new corrected value
of J2. This is a consequence of the form of the oblateness perturbations
where J, is factored by aez/r3 (where a_ is the equatorial radius of Sa-
turn and r is the radius vector of the satellite). Since r is propor-
tional to the major semi axis, this factor is effectively aez/aa. Thus
the major semi axis appears in the oblateness forces at a rather high
power and a change in its value will also affect the value of Jz. Thus

we might expect correlations between J, and the major semi axes of the

2
satellite, and these do appear in the least-squares scheme. However, they

do not cause erroneous corrections to be made to the parameters concerned.

The RMS residuals obtained after the final iteration are as follows.

The rejection limit on individual 0-C's is 2".0.

Objects observed Datum | Observations RMS Mean
Saturn - Titan P 160 of 176 0". 462 -0".101
Saturn - Titan S 137 of 145 0".513 0".160
Saturn - Iapetus P 154 of 162 0".750 0".059
Saturn - Iapetus S 153 of 159 0".712 0".461
Saturn - Hyperion P 457 of 473 0".732 -0".169
Saturn - Hyperion S 435 of 465 0".876 0".521
Titan - Iapetus P 411 of 417 0".383 0".006
Titan - Iapetus S 407 of 415 0".355 0'".188
Titan - Hyperion P 344 of 355 0". 454 -0".043
Titan - Hyperion S 341 of 351 0".539 0".121
Iapetus - Hyperion P 13 of 13 0".330 0".073
Tapetus - Hyperion S 13 of 13 0".235 0".064

Numerical Integration 166



Again, these RMS residuals are almost identical to those obtained in
trials 1 and 2, with the same number of data falling within the 2".0
limit. Statistically, therefore, the parameters are based upon effec-

tively the same data set as in trials 1 and 2. The values obtained for

uT and J2 are
-4
uT = (2.36651 = 0.00028) 10
J2 = 0.01779 £ 0.00043

using a value of 60000 km (4.0107 x 10-4 AU) for the equatorial radius

of Saturn.

5.9 DISCUSSION OF RESULTS

Values of the mass of Titan

We present below the values determined for the mass of Titan in this work
and in two other recent papers. Sinclair and Taylor's (1985) value was
obtained by fitting a numerical integration to photographic observations
over the period 1967 to 1982. Tyler et al (1981) derived their value from
analysis of radio tracking of the Voyager 1 spacecraft. We also include
values calculated by Message based upon comparison of his theory of the

motion of Hyperion with Woltjer's opposition mean data. Value (a) is a
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weighted average of values determined from individual terms of the theory

whilst value (b) is a least-squares solution.

Source u,l,xlO-4

Trial 2 2.36659 * 0.00027
Trial &4 2.36651 £ 0.00028
Sinclair and Taylor (1985) 2.36777 £ 0.00055
Tyler et al (1981) 2.3664 £ 0.0008
Message (a) 2.3648 £ 0.0055
Message (b) 2.3677 £ 0.0004

There is good agreement between our values and that of Tyler et al.,

though (as with J_,) they do differ by several standard errors from Sin-

2
clair and Taylor's determination. It is probably not sufficient to invoke
an argument based on scale errors in visual observations tc explain this
discrepancy. The system is most sensitive to the mass of Titan via its
perturbations upon Hyperion and thus a theoretical analysis of the de-
pendence of the system upon Titan's mass will inevitably involve the
theory of the motion of Hyperion. We do not propose to perform such an
analysis in this work, recalling that one of the principal reasons for

adopting numerical integration as a model was to avoid the complications

of the theory of the motion of Hyperion !

Values of J2

The value of J2 includes the gravitational effect of the rings, the sec-
ular effect of the four inner satellites and any error in the mass adopted
for Rhea. For comparison, the equivalent value obtained by Sinclair and

Taylor is
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J2 = 0.01675 = 0.00089.
They write this combined or 'lumped' value as 3; and relate it to the true
value by

[44] J, = J, + 0.000061 + 52.6 Ay

2
where the constant represents the secular contribution of the satellites
Mimas, Enceladus, Tethys and Dione and of the rings, and AuR is the cor-
rection required to the mass of Rhea. They assume that AuR is zero and

thus the true value of J, is obtained by subtracting 0.000061 from the

2
"lumped’ value derived directly from observations. Thus for the true va-

lues we have

This work 0.01773 £ 0.00043
Sinclair and Taylor (1985) 0.01669 £ 0.00089

TAU (1976) recommended 0.01645.

Our value is consistent with that of Sinclair and Taylor. They differ by
0.00104, rather more than one standard error of Sinclair and Taylor. As
noted before, the oblateness perturbations are dependent upon the size
of the satellite orbit in addition to J2’ Neglecting the eccentricity of
the orbit, the principal factor in the second harmonic of the oblateness
disturbing function includes J2/a3. A small change in the major semi axis
will alter this factor quite considerably, hence changing the magnitude
of the oblateness perturbations in the model and affecting the determi-
nation of J,. This is the reason why the major semi axes are correlated

2

Numerical Integration 169



with J2. Visual observations often contain an error of scale which means
that the values of the major semi axis of the orbit determined from such
observations may include an error in the form of a multiplicative factor.
For a particular observatory (i.e. a particular micrometer) this factor
will be roughly the same for all the observed satellites and so the
quantitsz/a3 will be in error by the same multiplicative factor for each

of them. We may expect the observed value of J, to be a little too large

2

or too small accordingly.

In the current work, the value of J, obtained from the integration

2
is perhaps some 6% larger than most other determinations, which are closer

to 0.165. This discrepancy is probably due to a scale error of the kind

described.

The standard error of our determination is half that of Sinclair and
Taylor. We base our value on 50 years' data while Sinclair and Taylor have
only 16 years of photographic observations. We note also that the two
integrations have overall RMS residuals of similar size. The value of J2
is determined from its secular effect on the nodes and inclinations of
the satellite orbits and hence we expect better values from data which
are spread over a greater time interval. Thus it is plausible that our
standard error should be smaller than that of Sinclair and Taylor, though

the discrepancy in the actual values of J, is disturbing and suggests that

2

our value should be used with caution.

Distribution of the residuals
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Saturn — Hyperion

80 Position Angle
2
®
=)
o
0
)
=
Sy
o
o
Z
0
3.00 0 3.00
80 Separation
2
©
3
o
0
)
&
S=¢
o
o
Z
0
3.00 0 3.00

Residuals (arc—seconds)

Numerical Integration 172



Saturn — Iapetus
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In the accompanying diagrams we present a number of histograms of 0-C
residuals from Trial 3 to illustrate the distribution of residuals in all

three of the successful (i.e. convergent) trials.

Most of the sets of residuals show a Gaussian distribution centred
about zero. This is what we expect if the data are subject only to random
errors and this is a basic premise of the least-squares correction proc-
ess. It is interesting to note, however, that the mean residuals in sep-
aration measures of Saturn-Hyperion and Saturn-Iapetus are rather large
the distribution is still nearly Gaussian but with a significantly non-
zero mean value. This suggests that these data contain systematic errors.

The mean residuals are

Saturn - Titan +0".160

Saturn - Hyperion  +0".522

Saturn - Iapetus +0".462

where all the residuals less than 5".0 have been included.

We therefore seek a source of systematic errors which tends to in-

crease the observed separation of Hyperion and Iapetus with respect to

Saturn by about 0".5. A number of possibilities may be considered

The phase defect of the disk of Saturn as seen from the Earth.
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Figure 14. Phase defect of the disk of Saturn

Except at opposition, the illuminated area of Saturn presented to the
Earth will not be perfectly circular. One limb will be in shadow (AA'
in the accompanying figure) and the visible part of the planet is the
segment B to A'. Thus the apparent diameter of the disk is reduced by
factor sin?9/2 where ¥ is the angle at Saturn subtended by the Sun and
the Earth. This has a maximum value of 0.002755 if we assume the Earth
and Saturn to move in circular coplanar orbits. Thus the apparent diameter
of Saturn (19".4 at mean opposition distance) may be reduced by approx-
imately 0".05 at most by the phase defect. The separation between the

planet and a satellite is made with respect to the apparent centre of the
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planet's disk and this will differ from the centre of the true disk by
exactly half the phase defect, 0".025. This is too small to satisfy our
requirements, and moreover it may act to increase or decrease the measured
separation depending on whether the satellite is one the same side of the
planet as the phase defect or not. Both cases are equally likely and the

net effect on a large number of observations will be zero.

The phase defect may manifest itself in another way which depends upon
the reflective properties of the disk of the planet. When the planet is
viewed from a direction other than the sub-Solar direction, the centre
of illumination of the disk (that is, the point at which the light in-
tensity is greatest) may not coincide with the sub-Solar point. The ob-
server may identify the centre of the disk with the centre of illumination
and hence introduce a further error similar to the phase defect. However,
as in the case of geometrical phase defect, the average effect upon a
large set of observations should be zero. Moreover, it ought to affect
all satellites equally unless we invoke some magnitude dependency. I am

grateful to Dr. Kaare Aksnes for this suggestion.

The figure of the satellite

Tapetus is known to have an uneven surface albedo : part of the satellite
is dark while other parts are brighter. As in the case of Saturn's phase
defect, the observer measures separation with respect to the centre of
the illuminated part of the satellite and this may not coincide with the
centre of mass, introducing an error. However, the apparent diameter of
Iapetus at mean opposition distance is 0".23, too small to explain the

systematic error under consideration. Furthermore, Hyperion is even
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smaller (0".03 at mean opposition) yet it displays the systematic error

even more markedly than Iapetus.

Thickness of the micrometer wire

The wire employed in the micrometer of the Washington 26-inch refractor
is stated (Wash. Obs. 1874, Appendix 1) to have a thickness of 0".251 in
the field of view. Systematic positioning of the wire so that its edge,
rather than its centre, coincided with the object under écrutiny may ex-
plain part of the large mean separation residuals. However, we can only
invoke this argument for the positioning of the wire upon the centre of
the disk of Saturn since the same micrometer was used to make the series
of inter-satellite measures from 1892 which do not show large mean resi-

duals.

Calibration of the micrometer scale

Newcomb gives the distance corresponding to one revolution of the micro-

meter screw of the Washington instrument as

9'.9480 + 0".0015
based upon transit measurements (Wash. Obs. 1874, Appendix 1). The error
coresponds to about #0".15 in a measured separation of 1000". The largest
separation measured in the satellite system of Saturn is some 600" and

the error in this measure would be 0".09.

The error is proportional to the measured separation and so it will

cause an error of scale in the entire satellite system. This effect is
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well known and it results in the major semi-axes of all of the satellites
being in error by the same factor. This in turn leads to an erroneous
determination of the mass of Saturn when these major semi-axes are used

with Kepler's third law.

This cannot, however, be used to explain the large mean separation
residuals because the mean residuals are not in proportion to the maximum
separation between each satellite and the planet, as we would expect of

they were due to multiplicative scale errors.

Unsteadiness of the atmosphere

Turbulence in the atmosphere prevents any celestial object from appearing
as a sharply-defined disk or point source. A satellite whose apparent
diameter would be 0".5 in the absence of an atmosphere will appear to the
observer as a disk perhaps omne arc-second across, depending upon local
atmospheric conditions. Thus the observer cannot measure the position of
the centre of the true disk but only the centre of a larger disk produced
by the rapid motion of the object, a motion far faster than the response
time of the human eye. This, however, will affect inter-satellite obser-
vations in the same way as Saturn-satellite observations and so it cannot
be used to explain the anomalously large separation mean residuals for
Saturn-satellite observations. I thank Hal Levison for suggesting this

to account for residuals in micrometer observations.

Personal errors of observation

Each observer introduces some small systematic error into the data by

~virtue of his chosen observational technique. It may be significant that
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most of the Saturn-satellite observations used in this work were made by
one observer (Hall). The main exception is the 1874 series of observations
which were undertaken by Newcomb. These data, therefore, carry the stamp
of Hall's personal error. This may have been a tendency to determine se-
paration measures too large by about half an arc-second for the fainter
satellites. Analysis of Hall's observations of the other faint satellites
of Saturn during this period could provide further useful information to

support this hypothesis, but that must be the subject of future work.

Final parameter sets

In addition to the masses and J factors determined (or adopted) in the
three successful trials, the position and velocity vectors of the satel-
lites were also determined at the epoch JED 2418800.5 and they are pre-

sented in appendix E.

5.10 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The principal aim of the work in this chapter was to show that numerical
integration can be used successfully in conjunction with visual micro-
metric observations to model the dynamics of a satellite system. As such,
it is a natural extension of the work of Sinclair and Taylor who estab-

lished the use of numerical integration with photographic astrometric
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observations. By its very nature, a numerical integration model must be
compared to each observation individually : one cannot form opposition
mean points as one might when using an analytical theory. This work is
heavily dependent on computers, both to perform the integration itself
and to carry out the least-squares comparison of the data with the inte-
gration. While integration has been widely used in modelling planetary
and lunar dynamics since the late 1940s, its application to natural sat-
ellite dynamics is a new and developing field. This is due to a large
extent to the fact that satellite theories do not generally need to give
positions as accurately with respect to the primary in order to yield the
same accuracy in the calculated values of the observed positions. It is
also important to note that satellite theory has suffered a long period
of relative neglect until the advent of space probes to Mars and the outer

planets.

The absence of observational data over the period 1930 to 1967 is another
problem in the study of the outer satellites of Saturn. With the death
of G Struve, observations become scarce, particularly for Hyperion and
Iapetus. Having fitted Sinclair's integration to data spanning 1874-1933
(this work) and 1967-1982 (Sinclair and Taylor 1985), the logical next
step is to comnstruct a model which is fitted to all the data, covering
over a century. This is an ambitious plan and it may prove difficult. In
principle, it is a straightforward calculation since both existing models
provide partial derivatives with respect to the same parameters of the
integration. Equations of condition may be combined to form a set of

normal equations regardless of whether the equations of condition are
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generated by comparison with photographic observations or visual cobser-

vations.

Among the problems, we may list

1. Significant disparities in the sizes of the random (and systematic)
errors in the different types of observation. As we have noted, visual
micrometric observations are subject to errors of scale which affect
separation measures. Moreover, visual observations relative to Saturn
may include systematic errors caused by the method used to make mi-

crometer measurements.

A system of weighting observations according to their type may
be the solution to this problem, though it does not address the

question of systematic errors.

2. The mean values of the separation residuals relative to Saturn tend
to differ from zero. They should not do this if they were subject only
to random errors. An investigation of the cause of this systematic
error is necessary in order to give greater validity to the parameters

determined in this chapter.

3. The distribution of the data over the 109 years of the proposed global
numerical integration is very uneven. It is split into two sets of
roughly equal size, about 3000 data in each. One set consists of quite
accurate photographic observations over a period of 16 years, while

the other is a collection of rather lower accuracy micrometric ob-
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servations covering a period of 50 years. There is a 40-year gap be-

tween the two sets, where data are all but absent.

4. The resources required to perform such an integration may prove re-
strictive. Using Sinclair's integration program 'Titan' on an IBM
3083, the two 50-year runs would take a total of about 1200 seconds
of CPU time, equivalent to many hours on a VAX machine. The least-
squares analysis of the observations must also be added to this. Ev-
idently, careful planning of the logistics of such a project would

be essential.
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