4.0 PREPARATION OF VISUAL OBSERVATIONS

In this chapter we develop the theory required to compare the observations
of the satellites of Saturn with any dynamical theory. The task falls into

three main parts

1. Conversion of the time scales of the data into Universal Time and then
into Ephemeris Time, which is the time scale in which the dynamical
theories are expressed. We also consider one or two other minor points

relating to time- scales.

2. The calculations required to obtain a computed topocentric position
of a satellite from its Saturnicentric theory. Such a topocentric
position must be directly comparable to observations and so it must
incorporate a number of important physical effects in addition to the

simple translation of the origin from Saturn to the observer.

3. In order to enter a differential correction process on the parameters
of the theory it is necessary to calculate the partial derivatives
of the observed quantities with respect to the Saturnicentric coor-

dinates of the satellite.
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The solutions to these problems are covered in the following sections.

4.1 SYSTEMS OF TIME MEASUREMENT

Several time scales are used in the data sets. In each case we must devise
a procedure for converting the given time of each observation into Uni-
versal Time. The only case where any complication might arise is in the
treatment of Local Apparent Sidereal Time, although some care is also
required when dealing with Mean Astronomical Time systems (such as WMAT).
The method of conversion from LST to UT and from WMAT to UT is given in
the next two sub-sections. As will be shown in a subsequent section, we
require the Local Sidereal Time of each observation regardless of the time
scale used for the observation itself and so a method for calculating LST

from UT is also given.

The dynamical theories of the satellites of Saturn have as their in-
dependent variable yet another time scale, known as Ephemeris Time (E.T.).
The significance of this concept is rather important and will be discussed
in a further sub-section where we also consider the effect of errors in
the time argument as they are reflected in the observed positions of the

satellites.

The final sub-section deals with the correction to the 'observed' time

to allow for the 'light-time' delay. The practical method for making this
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correction involves an iteration to determine the topocentric position

of Saturn and is thus also relevant to the section on reference frames.

4.,1.1 CONVERSION OF WMAT TO UNIVERSAL TIME

Washington Mean Astronomical Time is a solar time scale which runs exactly
12 hours behind Washington Mean Civil Time. An astronomical day begins
at midday on the corresponding civil day : thus the astronomical day 1875
February 7 Dbegins at mean midday on the civil day 1875 February 7 and

ends at mean midday on the civil day 1875 February 8.

The conversion from Washington Mean Astronomical Time to Universal

Time is carried out in the following way :

Example

Given WMAT = 1875 February 7 10h 14m 23s

(1) Add 12h to get Washington Mean Civil Time

WMCT = 1875 February 7 22h 14m 23s
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(2) Add the longitude of the observatory, expressed in hours, minutes and

seconds and measured in a positive sense westwards.

The longitude of USNO is +5h 08m 15.71s

Thus the Universal Time is 1875 February 7 22h 14m 23s

+ 5h 08m 16s

= 1875 February 8 3h 22m 39s

So 1875 February 7 10h 1l4m 23s WMAT corresponds to 1875 February 8 3h

22m 39s Universal Time.

4.1.2 CONVERSION OF LST TO UNIVERSAL TIME

All observations published by H. Struve and G. Struve are measured using
Local (Apparent) Sidereal Time. The conversion from LST to UT is illus-

trated by the following example, taken from G. Struve (Heft 2, page 20).

Example

Given Local (Apparent) Sidereal Time = 1916 January 11d 5h 10m 57s and

X (Babelsberg) = - Oh 52m 25.49s West
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(1) This dinstant falls somewhere during the Astronomical Day of January

11 i.e. between about January 11d 18h UT and January 12d 6h UT.

(2) Strictly speaking, we should apply the correction for nutation
(Equation of the Equinoxes) at the start of the calculation, but it is
so small that it can be applied to the final derived UT. We shall neglect

it in this example.

(3) Greenwich Sidereal Time = Local Sidereal Time + Longitude West

= 5h 10m 57s - Oh 52m 25s
= 4h 18m 32s
(4) Julian Day Number for 1916 January 11d 12h UT = 2420874.0

d = JD - 2415020.0 = 5854.0

Tu = d/36525 = 0.160273785

GMST_ 239255 .836 + 8640184° .542 T+ 0%.0929 T’

= 7% 18™ 4059

GMST at 1916 January 11d 12h UT = 19% 18" 40°.9

(5) Elapsed interval of Sidereal Time
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h h

ASTY = (24 + ) 4 18™ 325 - 197 18™ 405 .9

8 59 51

(6) Elapsed interval of Universal Time

A(UT) = A(ST) x a o = 0.99726 95664
= gl 587 23S
Thus the time is JD 2420874 + 8 58T 235 = 2420874.37388

4.1.3 CONVERSION OF UT TO LOCAL SIDEREAL TIME

We require the Local Apparent Sidereal Time at the instant of each ob-
servation in order to calculate the topocentric correction vector i.e.
the topocentric position vector of the geocentre referred to the True
Equator and Equinox of Date. For those observations where the LST is not
explicitly given (that is, all data except that published by Struve father
and son) we must calculate the Local Sidereal Time from the Universal Time
of the observation. The procedure is described in the Explanatory Sup-
plement and also in standard works on positional and observational as-

tronomy such as Smart, so we do not provide details here.
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4.1.4 UNIVERSAL TIME AND EPHEMERIS TIME

All of the observations of the satellites of Saturn are measured using
time scales which are defined by the rotation of the Earth on its axis
with respect to the Mean Equator and Equinox of date. The fundamental time

scale so defined is called Universal Time.

The dynamical theories describing the motion of the satellites have
a different time scale as their independent argument. This is Ephemeris
Time and it is defined (and determined) by observations of the Sun, Moon
and planets. That is to say, ET is defined by the orbital motions of se-
veral bodies in the Solar System, principally the Moon. Hence ET is de-
fined by a different physical system to that defining UT. This difference
is manifested by the behaviour of the quantity AT =ET - UT. AT is non-zero
and it is not constant : at the present time it has a value of about 60s
and is increasing by approximately 1 second per year. A graph of AT to-
gether with a table of values from 1621 to 1972 is given in the Explana-

tory Supplement (pp 90 - 91).

In order to obtain a valid argument for our chosen dynamical theory,
whether it is analytic or numeric, we must add AT to the UT of each ob-
servation so that we shall have a time expressed in the (dynamical) ET

scale.
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4.1.5 LIGHT-TIME AND THE TOPOCENTRIC POSITION OF SATURN

So far, all conversion and correction operations have been carried out
on the topocentric time of the observation. We have the Ephemeris Time

at which the observation was made on the Earth. However, we are observing

a system which is some 8 or 9 AU distant and hence because the speed of
light is finite, we see the satellite system as it was about 70 minutes
ago. This time-lag is called light-time : it is the time taken for light
from the system to reach the observer and it must be subtracted from the
ET of the observation in order to yield the time argument with which we

enter the dynamical theory.

The light-time is determined by an iterative process. It is assumed
that we know the heliocentric position vector of the observer at the ET
of the observation and that we possess a heliocentric theory of the motion

of Saturn. The procedure may be represented as the following algorithm

(1) Let the Ephemeris Time of the observation at the Earth be t and the

topocentric position vector of the centre of the Sun at this instant be

R ; as a first approximation set the light-time T to zero : 1 = 0.

(2) Enter the heliocentric theory of Saturn with time argument t - T.
Write the position vector (referred to the True Equator and Equinox of

Date) as r = x(t - 1).
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(3) Calculate the light-time from
[1] T = B| R+

where B is the light-time for unit distance, 5.77559 10_3days per AU.

(4) Repeat steps (2) and (3) until successive values of 1 converge. This
is the light-time to be subtracted from t in order to obtain the time
argument for the dynamical models. The vector R + r gives the topocentric

position vector of Saturn for the observation.

4.1.6 ERROR IN THE TIME

A number of simplifying assumptions have been made when calculating the
time argument for each observation. Since we are describing a dynamical
system, an error in the time will cause a corresponding error in the Sa-
turnicentric positions of the satellites and hence also in their positions
as seen from the Earth. In this section we consider the size of such er-

rors and their effect upon the reduction of the observatioms.

The errors are of two types
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(1) Systematic and/or random errors in the calculation of the time of the
observation i.e. at the Earth before correction for light-time. Such er-

rors may result from several sources.

i Error in the time given in the original reference.

. Error in the longitude adopted to convert LST and WMAT to UT.

i Error in the value adopted for AT.

e Error caused by neglecting the equation of the equinoxes (A¢.cose)
in the conversion of Local Apparent Sidereal Time to UT.

® Rounding error in the Julian Date (Od.00001 ~ 0o°

.86).

The effect of random errors may be determined to first order by as-
suming that the satellite is moving in a circular orbit. We may calculate
the distance moved by a satellite in its orbit in a given small time in-

terval At. The distance is

[2] Ax = a.n.At
where a = semi-major axis of the orbit
n = mean motion of the satellite.
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On the further assumption that the satellite system is viewed from
an average distance of 8.5 AU then we can calculate the arc subtended by
a distance Ax as seen from the Earth. This arc A¢ is the maximum error
in the observed position of each satellite relative to Saturn due to an

error At in the time argument of the theory. We may write

[3] A¢ = Ax/8.5.

The arc A¢ corresponding to At = 1 second is given for each satellite in
the table below. The error At required to produce a A¢ of 0.1 arc seconds
is also given, expressed in days and in seconds.

The effect of an error in the time

Satellite Ap/" (for At=1s) At (for A¢=0".1)
days seconds
Mimas 0.0023 0.000498 43.0
Enceladus 0.0021 0.000565 48.8
Tethys 0.0018 0.000628 54.3
Dibne 0.0016 0.000711 61.5
Rhea 0.06014 0.000841 72.6
Titan 0.00090 0.00128 111
Hyperion 0.00082 0.00141 122
Tapetus 0.00053 0.00219 189

Preparation of visual observations 87



Clearly, for the outer satellites an error in the time of up to 10 seconds
will not alter the observed position by more than 0".01. The observations

are rather insensitive to small errors in the time.

(2) Error in the light time : we have assumed that the light time from
the observer to each of the satellites is equal to that from the observer
to the centre of Saturn. This is equivalent to the assumption that the
satellites and Saturn are all equidistant from the observer. Evidently,
depending upon the position in its orbit, each satellite will be closer
or further than the centre of Saturn and so will require a slightly dif-
ferent light time. In a completely rigorous calculation we would use the
iterative process described in the previous section upon each satellite
in order to obtain individual light times, but we will show that the

simplifying assumption does not introduce serious errors.

Consider the following diagram, which represents the corbit of a sa-

tellite (taken to be circular to first order).
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Saturn

/ Satellite

To the observer at distance p

Figure 8. Light time error

As = a.cosd.Ad AY = n.At
At = -d/c Ay = As/p
Thus
[4] Ay = -(na?/pc)cos?d.
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The following table gives the value of x = na?/pc for each satellite.
This is the maximum value of Ay. We assume p = 8.5 AU and ¢ = 173.14
AU/day. This gives x = na?/1472 = 880.4 a?/P where P is the orbital pe-
riod in days.

Light-time error

Satellite x/arc-seconds
Mimas 0.0014
Enceladus 0.0016
Tethys 0.0018
Dione 0.0020
Rhea 0.0024
Titan 0.0037
Hyperion 0.0041
Iapetus 0.0063

We see that the effect of the error in the light-time is quite negligible

for all the satellites.

4.2 COORDINATE SYSTEMS AND REFERENCE FRAMES

Each observation of the position of one satellite relative to another is

made in a topocentric coordinate system which is unique and peculiar to
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the time and place of the observation. It is based upon the True Equator
and Equinox of date but it includes the effects of aberration and of re-
fraction insofar as they alter the relative positions of the two satel-

lites. We may call this the 'O - frame'.

The dynamical theory describing the motions of the satellites is, by
contrast, set in a fixed coordinate system (the 'I - frame') based upon
either the Mean Equator and Equinox of the epoch B1950.0 or upon the
equator plane of Saturn and its intersection with the Earth's Mean Equator
of B1950.0. In order to compare the dynamical theory with observations
it is necessary to apply a transformation to convert the position of the
satellite in the I-frame into an observed position in the O-frame. The

transformation consists of four stages

(1) A rotation to convert from the Mean Equator and Equinox of B1950.0
(or Saturn's equator and the Earth's Mean Equator of B1950.0) to the True

Equator and Equinox of Date.

After this stage we have Saturnicentric positions referred to the True
Equator and Equinox of Date. The coordinate axes are now parallel to those

used to express the topocentric position vector of Saturn.

(2) A translation to shift the origin from the centre of Saturn to the
observer (i.e. the topocentre). This translation is carried out by adding

the topocentric position vector of the centre of Saturn (R) to the Sa-
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turnicentric position vector of each satellite (r) as shown in the fol-

lowing diagram.

Satellite

Saturn

Observer

Figure 9. Topocentric position

We now have the topocentric position of each satellite referred to
the True Equator and Equinox of date. However, it has been assumed that
the satellite is at rest with respect to the observer. This is not so.

Hence we require

(3) A correction to allow for the velocity of the satellite relative to

the observer. This correction is actually a Lorentz transformation in a

simplified form and is called aberration.
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(4) Finally, we must make allowance for the optical properties of the
Earth's atmosphere through which, of course, all observation are made.
The elevation of celestial bodies above the horizon is affected by atmo-
spheric refraction. The size of the refraction depends upon the elevation

itself.

Each of these stages are described fully in the following sectioms.

4.2.1 ROTATION TO THE TRUE EQUATOR AND EQUINOX OF DATE

We may assume that the Saturnicentric positions of the satellites given
by the dynamical model are referred to the equator of Saturn and its imn-
tersection with the Earth's Mean Equator of B1950.0. This is the system

used in the numeric integration program 'Titan' and it is defined thus

1. The coordinate system has the centre of Saturn as its origin.

2. The equator plane of Saturn (i.e. its plane of axial symmetry) is the
xy-plane of the coordinate system. This, together with (1), implies
that the z-axis of the system is identical to Saturn's axis of rota-

tional symmetry.
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3. The direction of the x-axis of the system is defined by the ascending
node of the equator plane of Saturn upon the Earth's Mean Equator of

B1950.0

If we define

N = the Right Ascension of the ascending node of the equator plane
of Saturn on the Earth's Mean Equator of B1950.0, referred to the

Mean Equinox of B1950.0

I = the inclination of the equator plane of Saturn to the Earth's

Mean Equator of B1950.0

then we may immediately write a transformation matrix to convert a vector
from the reference frame defined above (the I-frame) to the Mean Equator

and Equinox of B1950.0.
Let (X, Y, Z)I be the components of any vector referred to the integration
frame and let (X, Y, Z)B1950 0 be the components of the same vector re-

ferred to the Mean Equator and Equinox of B1950.0.

Then we may write

X1950.0 = Ryi¥p * ORyYp F O Rgy7
(5] Yig50.0 = Rio%p * Roo¥p + RypZy
Zi950.0 = Ryg¥p t Rog¥p o+ Ryadp
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where the components of the matrix R are defined thus

R11 = + cosN = -0.6215608247
[6] R12 = = sinN cosI = -0.7780537554
R13 = 4+ sinN sinl = +0.0910741178
R?1 = 4+ sinN = +0.7780537554
[7] R22 = + cosN cosI = -0.6173459053
R23 = =~ cosN sinl = +0.0722626596
R31 = 0 = +0.0000000000
[8] R32 = + sinT = +0.1162599970
R33 = + cosI = +0.9932188143

The numerical values of the coefficients are those used in the reduction
of the observations and are based upon the following assumed values for

I and N.

N = 8 337 435

6° 40' 35"

—
1]

The second operation we must perform upon the position is the trans-
formation from the Mean Equator and Equinox of B1950.0 to the True Equator

and Equinox of Date. This transformation is a rotation and has two parts.

(1) Precession, which is the transformation from the Mean

Equator and Equinox of B1950.0 to the Mean Equator and Equinox of Date.
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(2) Nutation, which is the transformation from the Mean Equator

and Equinox of Date to the True Equator and Equinox of Date.

Both transformations can be written

in matrix form.

The components

of the precession matrix may be expressed as slowly-varying polynomials

in time and we use the expressions given on page 34 of the Explanatory

Supplement. We adopt a conventional matrix notation.

11

12

13

The components of the nutation

21
22

23

31

32

33

matrix may be written in the form given

on page 43 of the Explanatory Supplement or in the rigorous form given

below.

11
12
13

21
22
23

<

<

31
32
33

+ cose
+ cose

+ cose

+ sineg
+ sineg

+ sineg

cosAy

cosso.sinAw

sinso.sinAw

.sinAy
.COSE .
o

.sine
o

.sinAy
.COSE
o

.sing .
O

cosAy+

.coshAy+

.cosAy+

cosAy+

sine

sine

COS¢E

cose

.sineg
o

.COs¢g
o

.sine
o

.COs¢g
@)

where Ay and Ae are respectively the nutation in longitude and

in obliquity and are evaluated using the series given on pages 44-45 of

the Explanatory Supplement.
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g, = mean obliquity of date
e =& + Ae = true obliquity of date
We may combine the precession matrix and the nutation matrix for any

given date to obtain the precession-nutation matrix II defined by

= -+ .
(7] Ty = Vit VioToy T Vi3Ts;

4.2.2 TRANSLATION OF THE ORIGIN TO THE OBSERVER

This is a very simple transformation : to obtain the topocentric coordi-
nates of the satellite we add the Saturnicentric coordinates of that sa-
tellite to the topocentric coordinates of Saturn, which have been
determined as part of the light time calculation. At this stage, all co-

ordinates should be referred to the True Equator and Equinoxvof Date.

4.2.3 ABERRATION

The effect called aberration arises from the fact that the observer has
a small but finite velocity relative to the observed object. Thus the

observed direction to the object is not the same as its instantaneous
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geometrical direction but is given by the resultant of the velocity vector
of the light from the object and the velocity of the observer relative

to it.

A detailed account of aberration may be found in Smart, Brouwer and
Clemence, Explanatory Supplement and other works on positional astronomy.
It is sufficient to note here that aberration can change the position of
objects near the ecliptic by up to 20 arc seconds. However, its effect
varies only a little over a small area of the sky and so we need only
consider the effect of differential aberration. A table for calculating
differential aberration is given on pages 52-53 of the Explanatory Sup-
plement. For objects near the ecliptic the following maximum values apply

(Astronomical Almanac page B21).

Change in Aa/0".01 = -0.570 cos(H+a)secd.Aa

-0.570 sin(H+a)secdtand.Ad

Change in A§/0".01 =

|
+
(@)
(9;]
~
(@

sin(H+a)sind . Ao

-0.570 cos(H+a)cosb.AS

where Ao and A8 are in arc-minutes.

(Note that the coefficient 0.570 beccmes 0.00950 when Ao and Ad are in

arc-seconds. )

For 6 = +23° we have

Aa/0".01 = -0.62 cos(H+a).Aa

-0.26 sin(H+a).Ad
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AG/0".01 = 40.22 sin(H+a).Ax
-0.52 cos(H+a).A6.
For Iapetus the separation can be approximately 9'.5 giving Ac =
10'.3/1.414 and AS = 9'.5/1.414 so that the maximum effect is of the order

of 0".06 for the outermost satellite .

We can regard the effect of differential aberration as proportional
to the separation and so it is most important for the outer satellites.
A change of 0".06 in the relative positions of two satellites should not

be neglected in the reduction of the observations.

We calculate the effect of aberration upon the positions of the sat-
ellites using the formulae adapted from pages 156-160 of the Explanatory

Supplement.

Writing Ae = correction to the Right Ascension and A8 = correction to

the Declination then

Ae = h.sin(H+a ).sech
o o
[8]
A8 = h.cos(H+a ).sind + i.cosé
o o o
where h.sin H = C
h.cos H = D
i - = C.tane = 0.43382.C for practical purposes.

Preparation of visual observations 99



C and D are the aberration Day Numbers formed from the velocity of
the Earth relative to Saturn. The heliocentric velocity of the Earth is
calculated using the subroutine BARVEL (Stumpff 1980) whilst the velocity
of Saturn is calculated by a 9-point Lagrange differentiation formula
operating upon a set of heliocentric coordinates tabulated at equal in-
tervals. Denoting by (x', y', z') the components of the velocity of the
Earth relative to Saturn, referred to the Mean Equator and Equinox of

Date, then the Day Numbers are given by :

C =+y'/c
[9]
D = -x'/c
where 1/c = 5.7756.10_3 days/AU.

As in the calculation of the Day Numbers in the Astronomical Almanac,
the motions of the Earth and of Saturn are assumed to lie entirely within
the plane of the ecliptic. Saturn's orbit is inclined at about 2°.5 to
the ecliptic and this introduces an error of approximately (V/c)tan2°.5
into the aberration in the Declination, where V is the orbital speed of
Saturn. The relative size of this error compared to the total effect of
aberration is (V/U)tan2°.5 where U is the orbital speed of the Earth.
This amounts to 0.014 or about 1% of the total aberration. The greatest
error that this will produce in the differential aberration for any sat-

ellite pair is thus 0".06 x 0.014 = 0".0008 which is entirely negligible.
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4.2.4 REFRACTION

The variation of the refractive index of the Earth's atmosphere causes
the light rays from astronomical objects to be deflected during the pas-
sage through the atmosphere. A thorough account of refraction can be found

in Smart (1978) and we adopt the formula given by Smart, namely

[10] R=R() =z - ¢ =258".294 tang - 0".0668 tang
where z = true zenith distance (i.e. unaffected by refraction)
Z = observed zenith distance.

Thus the effect of refraction is to increase the zenith distance of
an object by an amount R. This causes the observed Right Ascension and

Declination of the object to be changed by a small amount Aa, AS.

As in the case of aberration, we are concerned with differential ef-
fects and thus with the change in refraction over a small area of the sky.
Consider two objects close together but with different zenith distances.

Using the notation above we may write

N
Il

L= g HRED

N
I

Thus
[11] z, -2, =8¢, - & +R(E) - RE

2 1

which we may write to first order as
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[12] Z, "2y =&, -+ (&, -¢)) dR.

dg

1]

(&, - L)+ dR)
a

where dR/dZ is evaluated at ¢ = Cl'

Writing R = A.tang + B.tan®C then we have

[13] dR = A + (A + 3B)tan®¢ + 3Btan“g
dg

and the coefficients A and B are, in radians, 2.8262.10-4 and -3.24.10"7

respectively.

The difference in the zenith distance between the two objects is affected
by refraction in the following way.
(zy =z - (&, - &)

= &, ~¢pk+ A+ 3B)tan?g + 3Btan®y)

2

To second order we have

- - - - 2 2
[14] zZ, "~ 24 (CZ cl)(l + dR) + _3}@2 Cl) d°R
dg 2 dz?
and
[15] d?R = 2(A + 3B)tan ¢ + (2A + 18B) tan®z + 12B tan®Z.
dz?
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As an example of the magnitude of the effect of differential refraction
we may take the extreme case of two objects only 30° above the horizon

and differing in elevation by 600 arc seconds.

Thus Z, = 60° and Ty =%y = 2.9><10-3 radians

dR/dz = 1.12x107°

d2R/dz? = 3.82x107°.

Hence the first-order term is 3.ZX10_6 radians = 0".67 while the sec-

8 0".003. The first-order effect of refraction

ond-order term is 1.6x10
is to decrease the difference in zenith distance by about one part in a

thousand. Clearly, the second-order term is quite negligible.

In practise we wish to calculate the effect of refraction upon the
observed RA and Dec of the objects, and hence upon their relative posi-

tions.

We begin by writing the formulae given in the Explanatory Supplement

(page 26) which relate the elevation and azimuth of an object to its

Declination and Local Hour Angle (h = Local Sidereal Time - R.A.).
cos 6§ sin h = - cos a cos A =2

[19] cos § cos h = sin a cos ¢ - cos a cos A sin ¢ =m
sin 6 = sin a sin ¢ +*+ cos a cos A cos ¢ =n
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- cos 6 sin h

cos a sin A

1l

[20] cos a cos A sin 8 cos ¢ - cos & cos h sin ¢

sin a = sin 6 sin ¢ + cos & cos h cos ¢

We take the partial derivatives of the first two equations with respect

to the elevation a

-sin 6 sin h E£.+ cos 6§ cos h 22 = 3&
da da da
[21]
-sin 6 cos h 38 - cos 6 sin h 3h = 3m
Ja 3a  da

which may be solved to yield

sin § 986 = - sin h.éﬁ.- cos h EE
Ja da da
cos & 32-= - sin h 3m + cos h 3%.
da da da

It is preferable to employ dn/3a in order to evaluate 88/3a. Thus

[22] cos & 8n

3 =
Ja da

because the factor sin 6§ causes problems for objects near to the celestial

equator.

We also re-write 3h/3a as -3a/3a and we finally'obtain

Preparation of visual observatioms 104



cos?8 da - cos ¢ sin A

[20]
cos &

IS
I

sin ¢ cos a - cos ¢ sin a cos A.

Using these derivatives we may calculate the change in « and & due to a

small change (Aa) in the elevation :

i
@ |
& I

AS = 38 Aa = 38 x R.

These formulae represent first-order corrections. Rigorous cor-
rections may be obtained by calculating the pre-refraction elevation and
azimuth of each object, adding the refraction to the elevation and then
re-calculating the hour-angle and declination. However, first-order cor-

rections are adequate for all practical purposes.
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4.2.5 POSITION ANGLE AND SEPARATION

Most of the observations of the satellites of Saturn made in the period
1874 to 1947 are in the form of position angle (P) and separation (s) of
one satellite relative to another. We must relate such P and s measures

to the topocentric RA and Dec of a pair of satellites.

Consider the topocentric spherical triangle whose vertices are de-
fined by the two satellites (denoted A and B) and the North Celestial
Pole. We require the position angle of B, the observed satellite, with

respect to A, the reference satellite.

In Figure 10 on page 107 the arc PA is the co-declination of A, that
is 90° - §,, and PB is the co-declination of B.
The angle APB is the difference in the Right Ascensions of the two sat-

ellites : ao. - «,. Note that the order of the satellites is important in

B A’
this angle. The difference must be formed in the sense observed minus

reference.

The arc AB is the separation of the two satellites and the angle PAB is
the position angle of B with respect to A. Position angle is measured from
North towards East, that is in an anti-clockwise sense as indicated in

the diagram.
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North Celestial

Pole

Figure 10. Position Angle and Separation

Using the formulae of spherical trigonometry (Explanatory Supplement page

472) we may write

X = sin s sin p = cos6B51n(uB - aA)
[22] ¥ =sin s cos p = 51n6Bc056A - cosGBsinGAcos(aB - aA)
vV = cos s = 51n6B51n6A + cosﬁBcoséAcos(aB - aA).

Since sin s is always positive, we may deduce the quadrant of p by
taking the sign of A as the sign of sin p and the sign of p as the sign

of cos p. The following table gives the appropriate quadrant for p.
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A P Quadrant

+ o+ 0°<ps< 90° 15°
+ - 90° < p < 180° 2™
- - 180° < p < 270° 374
_— 270° < p < 360° 48

4.2.6 TFIRST-ORDER CORRECTION TO P AND S FOR ABERRATION AND REFRACTION

If we neglect the effects of aberration and refraction upon the topocen-
tric Right Ascension and Declination of the satellites then the deduced
position angle and separation will be in error by a small amcount, typi-
cally up to 0".7 for the outermost satellite Iapetus. Analysis of the
available data has shown that the correction to be made to p and s for
the combined effects of aberration and refraction  generally does not
exceed 0.2% of the datum itself even for objects observed at elevations
less than 40°. For this reason we may regard aberration and refraction
as small corrections to position angle and separation due to small changes
in the R.A. and Dec of the satellites. If we suppose that aberration and
refraction combine to alter the topocentric R.A. and Dec of the satellites

by amounts AaA, AGA, AaB, A5B then we may write
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Ap = EE.AQA + EB AﬁA + EB AaB + EE A5B
BaA 35A BaB SGB
[23]
As = if AaA + EE A6A + EE AaB + 3? AGB.
aaA 36A 8aB 86B

In order to determine Ap and As it is evident that we need the partial
derivatives of p and s with respect to the R.A. and Dec of the two sat-
ellites. These derivatives are also required in the differential cor-
rection process which is used to calculate improved wvalues of the
parameters of the dynamical model, and expressions for these partial de-

rivatives are given in the following sections.

4.3 COMPARISON OF OBSERVATION WITH THEORY : DIFFERENTIAL CORRECTION

Comparison of a dynamical theory with observational data serves two pur-

poses.

1. It allows us to evaluate how well the theory represents the dynamics

of the real system which it is intended to model.

2. It enables us to improve the theory so that it is a closer model of
the real system. This improvement may take the form of additional
terms in an analytic theory, but more often it involves making small
corrections to the numerical values of the parameters upon which the

theory is based (i.e. orbital elements, or starting conditions of a
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numerical integration). This method of improving a dynamical theory
can be put into practise using the technique of differemntial cor-

rections to the parameters.

Suppose we have a theory which provides the positions of a number of
satellites at any given time t. The theory contains a set of parameters

e.. and so in a mathematical sense the

(orbital elements) €15 €gs --- 5y

coordinates of each satellite are functions of those parameters and also
of the time argument. Any observable quantity, say a position angle p,
is a function of the coordinates of the satellites and hence it is also

a function of the parameters of the theory via the coordinates.

With a chosen set of parameters we may calculate the value of the
observed quantity at some instant using the dynamical theory. This is
called the computed ('C') value of p and it is denoted as p.- At the same
instant we have a value of p which has been obtained by observing the real
satellite system. This is the observed ('0') value and is denoted as P, -
The difference between the two, in the sense observed-minus-computed, is

called the 0-C or residual and is denoted as Ap

[24] bp = p_ - P,

We assume that this difference is due mainly to errors in the adopted
values of the parameters and we seek to make corrections to the parameters

Ael, Aez, RN AeN where

[25] Aei =(ei)o - (ei)c
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is the difference between the 'correct' or 'best' value and the value

adopted in the theory. Thus we may write

[26] Ap = 3p Ae, + 3p Aey+ ... + 3p Aey
de, dey dey

In this equation, the left-hand side is a known quantity, as are the de-
rivatives ap/ael, Gp/ae2 etc. The corrections Ael, Aez, RN AeN are not

known : they are the quantities which we wish to determine.

Such an equation is known as an equation of condition and it is the
basis of differential correction theory. Each observation yields an
equation of condition. In this context, a position angle measurement and
a separation measurement are regarded as separate observations and each

can be used to form an equation of condition.

When we have a large number of observations, we can form many
equations of condition and so we have a number of simultaneous linear
equations whose unknowns are the correction Aei. In most cases, we choose
to combine the equations of condition into a set of normal equations in

order to obtain a least-squares solution.

In the following sections we derive expressions for the partial de-
rivatives of observed quantities with respect to the Saturnicentric co-
ordinates of the satellites produced by the dynamical models. Such
derivatives may be used with any theory which gives rectangular coordi-

nates of the satellites in a fixed Saturnicentric reference frame.
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4.4 PARTIAL DERIVATIVES OF POSITION ANGLE AND SEPARATION

In this section we derive the expressions for the partial derivatives of
position angle and separation with respect to the Saturnicentric coordi-
nates of the two observed objects. These coordinates are referred to the
True Equator and Equinox of Date, but both they and the partial deriva-
tives may be readily be converted to the fixed reference frame of the

theory or the integration.

Consider the spherical triangle (on the topocentric sky sphere)
formed by the North Celestial Pole and the two satellites. Refer to the
diagram, which shows the triangle as seen by the observer from the inside
of the sphere. Let the topocentric spherical coordinates of the objects
be Pas %po GA and PR Op> 6B and let p,s be the position angle and sepa-
ration of B relative to A. Position angle on the celestial sphere is

measured from the north, eastwards. Then we have

A = sin s sin p = coséB51n(aB - aA)
[27] U = sin s cos p = 51n5Bc055A - coséBs1n6Acos(aB - aA)
V = cos s = 31n5B51n6A + cosﬁBcoséAcos(aB - aA).

By differentiating A and u with respect to any parameter w and rearrang-

ing, we obtain
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sin s 93p cos p 3\ - sin p 3u
dw 3w 3w
[28]

@
0n
Il

cos s sin p 3\ + cos p 3u

3w W dw

and it is evident that

3p = cos p 8p = - sin p

A sin s 3 sin s
[29]

s = sin p ds = cos

3 cos s 3u cos s

We form the derivatives of XA and W with respect to the R.A. and Dec of

the two objects thus

g_)\_= - 3\ = - cos % cos (o:B - aA)
{!A 3(!5
[30] a =0
3<§4
3 = - sin §, ﬂn(% - ay)
36z
du = - 3p = - X sin §,
SQA aap
[31] W=y
364
%% = cos 23 cos Qq + sin ég sin §9 cos (ag - %4)
g

and we may now calculate the derivatives of p and s with respect to %y

GA’ ag, SB.
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[35] 3p = 3p 33X + 8p 3u
o, 83X 3o N Bay

and likewise for the other derivatives.

We may seek the derivatives of the R.A. and Dec with respect to the Sa-

turnicentric coordinates of the satellites.

pcos 8§ cose = x+X
[36] pcos § sina = y+Y
p sin 6 = z + Z

For each satellite we have

where (x,y,z) are the Saturnicentric coordinates of the satellite and

(X,Y,Z) are the topocentric coordinates of Saturn, all referred to the

True Equator and Equinox of Date.

We obtain the following derivatives

Eg = - sin a

9x p cos O
[37] 3¢ = + cos o

3y p cos ©

da = 0

3z
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36 = - sin § cos o

5 p
[38] 30 = - sin § sin «
3y P
38 = cos §
3z p

We may form these derivatives for both satellites and then we combine them

with derivatives such as 3p/3a to obtain

[39] 3p = p 8o + 3p 38
3x Ba 9x 36 dx

and o

and so forth. Note that «, and 6A are independent of Xps Vg Zps B

A

z.. Hence we do not include terms such

and 6B are independent of x A

A! YAJ

as aaA/BxB since they are zero.

At this point we have the partial derivatives of position angle and
separation with respect to the Cartesian coordinates of the satellites
in a system where all quantities are referred to the True Equator and
Equinox of Date. The dynamical model of the satellite system is referred
to a fixed coordinate system and so we must transform the derivatives to
that coordinate system. We recall that the coordinates in the reference
frame of the dynamical theory may be related to the True Equator and
Equinox of Date via a transformation matrix which incorporates the in-
stantaneous effect of precession and nutation and (in the case of the
numeric integration) a constant rotation transformation. If we denote

this matrix by M then we may write
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x =M . X + M12Y + M., Z

11 13
[37] y =My X o+ MY+ M7
z =M X o+ MY o+ MZ

where (x,y,z) are the components of a vector referred to the True Equator
and Equinox of Date and (X,Y,Z) are the components of that vector in the
reference frame of the dynamical model.

Now for any observed quantity p, we have

[38] 9p = 3p 3x + dp 3y + Ip 3z
3 X 3 dy 3X 3z 3X

and likewise for 3p/d3Y and 8p/3Z.

The derivatives 8x/8X, 3y/98X, 98z/9X etc. may be recognised as the compo-

nents of the matrix M. For example

9x/8X = M

11
[39] By/0X =M,
8z/0X =M, .

We may now calculate the partial derivatives of position angle and sepa-
ration with respect to the Saturnicentric coordinates produced by the
dynamical model. These are the derivatives that were sought in this sec-

tion.
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